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Quasi-steady state kinetics of simple sequential
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Applications of computer algebra technique to kinetic analysis of multienzyme reaction
including two and three distinct enzymes were described in the literature, which mainly de-
pend on Gröbner Basis theory. In the present study, we have applied the same methodology to
a hypothetical system with four enzymes. After deriving a composite rate law for a reaction
system with four distinct enzymes using the computer algebra systemMAPLE, the composite
rate law was fitted to simulated data for time versus product concentration to yield estimates
of the kinetic parameters.
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1. Introduction

To date, analyses of properties of enzymes have usually been conducted on iso-
lated enzymes invitro by performing initial rate experiments. Since the biochemical
properties of both individual enzymes and a system in which they act may depend on
interactions with other enzymes and metabolites invivo, an approach in which systems
of enzymes could be studied simultaneously provides advantages.

It is, however, sometimes essential to couple a reaction with a second reaction.
For instance, when it is not possible or convenient to follow a reaction directly in a
spectrophotometer, it may nonetheless be possible to follow it indirectly by coupling
it with another reaction. Furthermore, even if the reaction of interest can be assayed
directly, it is sometimes essential to couple it with a second reaction. For example, if
one of the products of the first reaction is a powerful inhibitor, or if a reversible reaction
is being studied in the less favored direction, so that equilibrium is reached after only
a small percentage of substrate has reacted, it may be difficult to measure the initial
velocity accurately [1].
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The rate behavior of a multienzyme reaction consisting of several individual re-
actions linked by freely diffusible intermediates depends on the rate behavior of the
individual reactions. Hence, a logical approach to the problem of determining the ki-
netics of a multienzyme reaction of this type would be to determine the kinetics of the
individual reactions and use the resulting rate equations to obtain a rate equation for
the multienzyme reaction. The kinetics of multienzyme reactions with one substrate
containing three enzymes has been studied elsewhere [2–4].

We could not find any study related to kinetic analysis of a multienzyme reaction
with four distinct enzymes, although it was reported that Gröbner basis theory can be em-
ployed to derive a composite rate law for any multienzyme system under a quasi-steady
state assumption [4]. In this study, we examined the applicability of a combination of
symbolic and numerical computation techniques to a hypothetical multienzyme reaction
including four distinct enzymes.

2. Methods

Our approach includes a combination of both symbolic (solution of simultaneous
equations, substitution of variables, determination of higher derivatives and so on) and
numerical (solution of differential equations, finding roots of a univariate polynomials,
fitting experimental data and so on) computation methods.

Gröbner Basis theory is a systematic approach to solving polynomial equations.
Details on Gröbner Basis theory can be found in [5,6].

However finding the exact solutions of polynomial equation is not the only goal.
Often it is enough to answer questions such as:

• Is the system of polynomial equations solvable?

• Does the system of polynomial equations have a finite number of solutions? If
so, how many solutions exist?

• Are there equivalent systems of equations that give more insight to their solu-
tions?

Answering these questions in the kinetic analysis of a multienzyme reaction under quasi-
steady state assumption provide extra advantageous that a more classical approach could
not.

In 1965, Buchberger [5] presented an algorithm in order to compute the Gröbner
Basis of any given ideal. Many computer algebra systems implement a version of Buch-
berger’s algorithm. These systems usually compute a reduced Gröbner Basis.MAPLE’s
Gröbner Basis package includes a sub-packagegbasis that computes areduced Gröbner
Basis. The syntax ofgbasis is “gbasis(F ,X,termorder)”. Here,F is a list of polynomi-
als,X is a list of intermediates and termorder is eithertdeg or plex that are the names of
term ordering which will be used.plex represents lexicographical ordering whiletdeg
means total degree ordering which is out of this study’s scope. With this syntax,gbasis
computes the reduced Gröbner Basis of the ideal〈F 〉 with respect to the intermediates
X and given term ordering.
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We have usedMAPLE 4.0 as a computer algebra system for symbolic computa-
tions [7]. Both symbolic and numerical computations were performed in a PC with
64 MB RAM and Pentium III processor running under Windows 98 operating system.

Enzyme kinetic theory and application of Gröbner Basis theory to derive a quasi-steady
state rate law via MAPLE

Mathematical model of the kinetics of enzyme reactions is described by a set of dif-
ferential or differential–algebraic equations. With the underlying first order mechanism,
a single enzyme reaction can be represented as in scheme 1.

Scheme 1. A simple sequential enzyme catalyzed reaction.

In scheme 1,[S] represents substrate concentration and[P ] stands for product
concentration. Under quasi-steady state assumptions, the kinetics of this reaction can be
mathematically described as a system of polynomial equations

f 1= v − k2[ES] + k−2[P ][E] = 0,

f 2= d[ES]
dt
= k1[E][S] + k−2[E][P ] − (k−1+ k2)[ES] = 0,

f 3= [E0] − [E] − [ES] = 0,

(1)

wherev = d[P ]/dt . The followingMAPLE syntax produces rate law for reaction de-
picted in scheme 1:

with(grobner);
Out1:=gbasis([f1,f2,f3],[E,ES,v],plex);
v=solve(Out1[3],v);

After appropriate arrangements, the rate of conversion ofS to P becomes

v = (VMax/KM,F)([S] − [P ]/KEQ)

1+ [S]/KM,F + [P ]/KM,R
, (2)

whereKEQ is the overall equilibrium constant,VMax is the maximum velocity andKM,F

andKM,R are forward and reverse Michaelis Menten constants, respectively. Definitions
of kinetic parameters in terms of individual rate constants are given by

KEQ = k1k2

k−1k−2
, KM,F = k−1+ k2

k1
, KM,R = k−1+ k2

k−2
, VMax = k2[E0].

(3)
When a sequence of such reactions form a simple sequential multienzyme reaction, be-
cause of the nonlinearities of the mathematical model and a great number of parameters,
the kinetic analyses becomes harder. However, that composite rate law using Gröbner



274 N. Yildirim / Quasi-steady state kinetics of simple sequential multienzyme reactions

Basis theory for multienzyme reactions can be derived with the aid of powerful comput-
ers and enables us to analyze the kinetics of such reactions.

3. Mathematical model of a simple sequential multienzyme reaction

To demonstrate the applicability of the methods in kinetic analysis of multienzyme
reactions, we have chosen a hypothetical linear system including four distinct enzymes
in which a substrateS is converted into a productP via feely diffusible intermediates
X1,X2 andX3 which link four individual reaction catalyzed by the enzymesE1, E2, E3

andE4 as shown in scheme 2.

Scheme 2. A simple sequential multienzyme reaction including four distinct enzymes.

Considering the net rates according to Michaelis Menten kinetics as given by equa-
tion (2), we can write four differential equations of the form

v1= V1,Max

K1,M,F

[S] − [X1]/K1,EQ

1+ [S]/K1,M,F+ [X1]/K1,M,R
,

v2= V2,Max

K2,M,F

[X1] − [X2]/K2,EQ

1+ [X1]/K2,M,F+ [X2]/K2,M,R
,

v3= V3,Max

K3,M,F

[X2] − [X3]/K3,EQ

1+ [X2]/K3,M,F+ [X3]/K3,M,R
,

v4= V4,Max

K4,M,F

[X3] − [P ]/K3,EQ

1+ [X3]/K4,M,F+ [P ]/K4,M,R
,

(4)

for kinetics of the system even though there are eight individual reactions in scheme 2.
Here the ratesvi (i = 1,2,3,4) are

v1 = d[X1]
dt

, v2 = d[X2]
dt

, v3 = d[X3]
dt

, v4 = d[P ]
dt

. (5)

The conservation law yields

[S] + [X1] + [X2] + [X3] + [P ] = [S]0, (6)

where the subscript 0 indicates initial concentrations of the metabolite. When the reac-
tion depicted in scheme 2 is in a quasi-steady state, the fluxv of the system is the same
for all of individual reactions. So, we have

v = v1 = v2 = v3 = v4. (7)

This assumption reduces the system of equations given in equation (4) to a system of
multivariate polynomial equations.
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Computation of a Gröbner Basis of the ideal generated by a set of polynomials
formed by equations (6) and (7) yields another set of polynomials whose solution set is
the same as that of the former. Therefore, the mathematical model for the kinetics of the
reaction and the computation of Gröbner Basis for this system inMAPLE’s syntax can
be obtained as follows:

Eq1:=numer(v-v1);
Eq2:=numer(v-v2);
Eq3:=numer(v-v3);
Eq4:=numer(v-v4);
Eq5:=[S]+[X1]+[X2]+[X3]+[X4]-[S]0;
Out2:=gbasis([Eq1,Eq2,Eq3,Eq4,Eq5],[S,X1,X2,X3,v],plex);

We need to take numerators ofv − vi (i = 1,2,3,4) to get the polynomials for
computation of Gröbner Basis. The denominators ofvi (i = 1,2,3,4) are nonzero
because of the fact that the rate constants and also concentration values cannot be nega-
tive. It turns out that the last polynomial inOut2 is a fourth order polynomial forv with
coefficients in terms of concentrationP and some kinetic parameters. This polynomial
is given in appendix A. Since the other four polynomials inOut2 are linear in concen-
trations ofX1, X2, X3 andS, we could then callMAPLE’s solve procedure to obtain
expressions for their concentrations in terms of concentration ofP and various kinetic
parameters analytically, although the size of these expressions would be extremely large.

The initial conditions for our hypothetical system are given by

[S]0 = 250.0 mM, [X1]0 = 0.0 mM, [X2]0 = 0.0 mM,

[X3]0 = 0.0 mM, [P ]0 = 0.0 mM.
(8)

Hypothetical values of all parameters for our system are given in table 1. After sensitivity
analysis of the dependence of these parameters on the fluxv, five parameters (K2,M,F,
K3,M,F, K4,M,F, K2,M,R andK3,M,R) were chosen to be estimated. Using the parameters
given in table 1, we first obtain simulated data for concentrationP against time and then
we get a set of artificial data which will be used for estimation of these five parameters
after superimposing pseudorandom error on the simulated data.

Table 1
Hypothetical values of all kinetic parameters for the system depicted in scheme 2.

Maximum Forward Michaelis Reverse Michaelis Equilibrium
velocities (mM/sec) Menten parameters Menten parameters constants

(mM) (mM)

V1,Max = 99.0× 100 K1,M,F = 12.0× 10−2 K1,M,R = 12.0× 10−3 K1,EQ= 13.6× 100

V2,Max = 17.0× 100 K2,M,F = 13.0× 10−2 K2,M,R = 13.0× 10−3 K2,EQ= 14.0× 100

V3,Max = 19.0× 100 K3,M,F = 15.0× 10−2 K3,M,R = 15.0× 10−3 K3,EQ= 11.0× 100

V4,Max = 15.0× 100 K4,M,F = 16.0× 10−2 K4,M,R = 16.0× 10−3 K4,EQ= 14.6× 100
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4. Estimation of kinetic parameters by fitting the rate law to simulated data

For estimation of the parameters, we preferredFORTRAN rather thanMAPLE to im-
plement numerical computations due to the limitations of numerical computation pack-
ages inMAPLE. Furthermore, the time required to end up any computation inMAPLE is
often longer than the time needed forFORTRAN.

The simulated data consist of ordered pairs of concentrationP against time. The
rate law we are fitting relatesv = d[P ]/dt to [P ]. We need to integrate the rate equation
in order to obtain theoretical values for concentrationsP to fit to the simulated data.

Estimation of the selected parameters can be determined by nonlinear least square
regression. This procedure has three stages. These are numerical solution of a fourth
order univariete polynomial, numerical solution of an initial value problem, and a mul-
tivariate optimization.

As mentioned before, the last polynomial in theOut2 is a fourth order univariate
polynomial, and it must be solved numerically first. TheNAG [8] routine ofC02EAF
was used for this purpose.C02EAF computes all roots of a univariate polynomial with
real coefficients (including complex roots). The error tolerance chosen forC02EAF is
10−8. Sincev is d[P ]/dt , after determining a meaningful root which makes all metabo-
lite concentrations non-negative,v must be integrated to construct an objective function
expressing deviations of theoretical values of[P ] from simulated data for multivariate
optimization. For this purpose, we have employedNAG routine ofD02AEF, that in-
tegrates a stiff system of first-order ordinary differential equations over a range with
suitable initial conditions using a variable-step method implementing the backward dif-
ferentiation formulae, is used as an integration routine. The error tolerance for this
routine is chosen as 10−3. The objective functionF obtained in this manner is of the
form

F =
∑

i

([P ]Simulatedi − [P ]Theoreticali

)2
. (9)

F is a function ofK2,M,F, K3,M,F, K4,M,F, K2,M,R andK3,M,R. PRAXIS [9] is used for
multivariate optimization and 10−6 is chosen as an error tolerance forPRAXIS.

To check the result obtained, we need to have an estimate of the error behavior of
our system. A simple approach to this is a statistical technique known as bootstrap [10].
At the minimum point of the objective functionF , we have small residual errors in each
point when using our estimated values for selected kinetic parameters. For each simu-
lated pair of concentrationP against time, we select one of the residual errors randomly,
and then adding it to the simulated data in turn, we get a set ofnew values forP con-
centrations. Then, we use these values as though they were simulated data in a second
round of minimization to calculate new estimates for selected parameters. After repeat-
ing this many times, we may compute standard deviations for each parameter. It may be
suggested that standard deviations are similar, so we get an idea about the accuracy of
our initial estimates.
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Figure 1. Graphical form of simulated curve and the curve drawn using the estimated values of selected
against time.

5. Results and discussions

Changes in concentrationsP over time were fitted to the rate equation given in
appendix A using aFORTRAN program. Before starting the estimation procedure, initial
values for each of the parameters must be specified. The choice of initial values is more
important if a large number of parameters are being varied.

Graphical results of least square fit are shown in figure 1. The simulated data
and the theoretical fitting model are in a very good agreement. Estimated values of the
parameters and the result of confidence interval obtained by bootstrap method are sum-
marized in table 2. Convergence of the estimation procedure is tested for several sets for
initial starting values of the selected 5-parameters. The estimated values of three para-
meters (K2,M,F, K3,M,F andK4,M,F) deviate from their original values by less than 5%.
However,K2,M,R andK3,M,R deviate from their original values by less than 12% (table 1).
We can conclude that forward Michaelis Menten parameters may have lower standard
deviations than reverse Michaelis Menten parameters. The graphical representation for
distribution residuals against time (figure 2) exhibits a random behavior indicating that
our parameters fit generally very well.

We have presented the applicability of mixed symbolic and numerical computation
techniques to the kinetic analyses of a simple sequential multienzyme reaction including
four distinct enzymes. It has been demonstrated that it is possible to obtain some kinetic
parameters for this system.

Implementation of symbolic computations inMAPLE also provides advantages be-
cause of the availability of the program. There are some studies on use ofMAPLE in
biochemical kinetic theory as a computer algebra system in the literature [11–13].
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Table 2
Hypothetical and estimated values with confidence intervals for selected kinetic parameters for the system

depicted in scheme 2.

Kinetic Original values Estimated values (mM)
parameters (mM) (Mean± SD)

K2,M,F 13.0× 10−2 12.33× 10−2 ± 3.60× 10−3

K3,M,F 15.0× 10−2 14.39× 10−2 ± 3.95× 10−3

K4,M,F 16.0× 10−2 16.16× 10−2 ± 1.29× 10−3

K2,M,R 13.0× 10−3 11.89× 10−3 ± 5.80× 10−4

K3,M,R 15.0× 10−3 15.99× 10−3 ± 4.91× 10−4

Figure 2. Graphical form of the distribution of the residuals against time. This graph shows that our
parameters fit very well.

The method presented here is general and there is practically no upper limit for the
number of parameters that can be estimated. It mainly depends on the number of data
file, the quality of the data and the initial starting values for the parameters.

However, there are also difficulties before the techniques can become generally
useful. One of the major problems is the time required for calculation of a Gröbner
basis for system of polynomial equations if the multienzyme reaction becomes more
complicated. Secondly, a more insidious problem is the selection of a minimization
method, some of which need the evaluation of the first and second derivatives of the ob-
jective function. When the expression for the rate law is a massive algebraic expression,
converting such expression intoFORTRAN format and making numerical computations
there is prone to round off error [4] due to the huge numbers produced byMAPLE even
if one select double precision option.
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The method introduced in this paper can fit progress-curve data to widely different
enzyme mechanisms including more than one substrate and product and provide us to
test the resultant fits by statistical methods.

As a result, although there are some limitations, the method described in this study
to analyze multienzyme reaction is mathematically accurate, fast and easy to use. Fur-
thermore after making some modifications, this method can also be employed for analy-
sis of larger systems with the help of powerful computers.
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Appendix A

The fourth order polynomial satisfied byv can be written as

Av4+ Bv3+ Cv2+Dv + E = 0,

where the coefficients are

A=−1737183448.0K3,M,FK2,M,R + 6945400.0K3,M,RK2,M,R[P ]
+ 62508600.0K3,M,RK2,M,FK2,M,R− 62508600.0K2,M,FK3,M,FK3,M,R

+ 62508600.0K2,M,FK3,M,FK4,M,F+ 3906787500.0K2,M,FK3,M,F[P ]K4,M,F

− 6945400.0K2,M,RK3,M,FK3,M,R + 6945400.0K2,M,RK3,M,FK4,M,F

+ 434087500.D0K2,M,RK3,M,F[P ]K4,M,F − 6945400.0K3,M,RK2,M,RK4,M,F

− 434087500.0K3,M,RK2,M,R[P ]K4,M,F,

B =−45610193750.0K2,M,RK3,M,F[P ]K4,M,F − 1048913250.0K3,M,RK2,M,R[P ]
+ 59351600000.0K3,M,RK2,M,R[P ]K4,M,F + 949625600.0K3,M,RK2,M,RK4,M,F

+ 63929250.0[P ]K3,M,FK2,M,F + 260495005848.0K3,M,RK2,M,R

− 1387386000.0K3,M,RK2,M,FK2,M,R+ 46119150000.0K2,M,FK3,M,F[P ]K4,M,F

+ 737906400.0K2,M,FK3,M,FK4,M,F + 199722600.0K2,M,FK3,M,FK3,M,R

+ 7103250.0[P ]K3,M,FK2,M,R+ 833944100.0K2,M,RK3,M,FK3,M,R

− 729763100.0K2,M,RK3,M,FK4,M,F + 107969400.0K4,M,FK3,M,RK2,M,F

+ 6748087500.0[P ]K4,M,FK3,M,RK2,M,F,

C = 786571087500.0K2,M,RK3,M,F[P ]K4,M,F + 42032412800.0K3,M,RK2,M,R[P ]
− 1766079356250.0K3,M,RK2,M,R[P ]K4,M,F

− 28257269700.0K3,M,RK2,M,RK4,M,F
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+ 754677000.0[P ]K3,M,FK2,M,F− 10266020465624.0K3,M,RK2,M,R

− 7273866600.0K3,M,RK2,M,FK2,M,R+ 11068596000.0K2,M,FK3,M,FK3,M,R

− 746348625.0[P ]K3,M,FK2,M,R− 23531583900.0K2,M,RK3,M,FK3,M,R

+ 12585137400.0K2,M,RK3,M,FK4,M,F + 110423250.0[P ]K3,M,RK2,M,F

+ 1274565600.0K4,M,FK3,M,RK2,M,F+ 79660350000.0[P ]K4,M,FK3,M,RK2,M,F,

D=−655944083175.0K3,M,RK2,M,R[P ] + 15239438775000.0K3,M,RK2,M,R[P ]K4,M,F

+ 243831020400.0K3,M,RK2,M,RK4,M,F+ 156765188755560.0K3,M,RK2,M,R

+ 210303324000.0K3,M,RK2,M,FK2,M,R+ 12871163250.0[P ]K3,M,FK2,M,R

+ 188777061000.0K2,M,RK3,M,FK3,M,R+ 1303533000.0[P ]K3,M,RK2,M,F,

E = 3580768471500.0K3,M,RK2,M,R[P ] − 832848959250000.0K3,M,RK2,M,R.
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